Artikel ini berkaitan dengan air dari segi perspektif kimia dan teknikal. Untuk melihat gambaran umum tetang air, sila lihat Air.
![]() | |||
| |||
![]() | |||
Nama | |||
---|---|---|---|
Nama IUPAC pilihan
Air | |||
Nama IUPAC sistematik
Oksidana (tidak digunakan secara umum)[3] | |||
Nama lain
| |||
Pengecam | |||
Imej model 3D Jmol
|
|||
3587155 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
DrugBank | |||
Nombor EC |
| ||
117 | |||
KEGG | |||
PubChem CID
|
|||
Nombor RTECS |
| ||
UNII | |||
| |||
| |||
Sifat | |||
H2O | |||
Jisim molar | 18.01528(33) g/mol | ||
Rupa bentuk | Pepejal berhablur putih yang hampir tanpa bau atau tanpa berwarna, cecair tanpa berwarna dengan dengan sedikit kebiruan, gas tanpa warna[4] | ||
Bau | Tidak berbau | ||
Ketumpatan | |||
Takat lebur | 0.00 °C (32.00 °F; 273.15 K) [b] | ||
Takat didih | 99.98 °C (211.96 °F; 373.13 K)[17][b] | ||
Keterlarutan | Kurang larut dalam haloalkana, hidrokarbon alifatik dan aromatik, eter.[8] Keterlarutan yang lebih baik dalam karboksilat, alkohol, keton, amina. Larut campur dengan metanol, etanol, propanol, isopropanol, aseton, gliserol, 1,4-dioksana, tetrahidrofuran, sulfolana, asetaldehid, dimetilformamida, dimetoksietana, dimetil sulfoksida, asetonitril. Larut campur separa dengan dietil eter, metil etil keton, diklorometana, etil asetat, bromin. | ||
Tekanan wap | 3.1690 kilopascal atau 0.031276 atm at 25 °C[9] | ||
Keasidan (pKa) | 13.995[10][11][a] | ||
Kebesan (pKb) | 13.995 | ||
Asid konjugat | Hidronium H3O+ (pKa = 0) | ||
Bes konjugat | Hidroksida OH– (pKb = 0) | ||
Kekonduksian haba | 0.6065 W/(m·K)[14] | ||
Indeks biasan (nD)
|
1.3330 (20 °C)[15] | ||
Kelikatan | 0.890 mPa·s (0.890 cP)[16] | ||
Struktur | |||
Struktur kristal | Heksagon | ||
C2v | |||
Bentuk molekul | Bengkok | ||
Momen dwikutub | 1.8546 D[18] | ||
Termokimia | |||
Muatan haba tentu, C | 75.385 ± 0.05 J/(mol·K)[17] | ||
Entropi molar piawai S |
69.95 ± 0.03 J/(mol·K)[17] | ||
Entalpi pembentukan
piawai (ΔfH⦵298) |
−285.83 ± 0.04 kJ/mol[8][17] | ||
Tenaga bebas Gibbs (ΔfG˚)
|
−237.24 kJ/mol[8] | ||
Bahaya | |||
Bahaya-bahaya utama | Lemas Runtuhan salji Keracunan air | ||
NFPA 704 (berlian api) | |||
Takat kilat | Non-flammable | ||
Sebatian berkaitan | |||
Anion lain
|
|||
pelarut berkaitan
|
|||
Kecuali jika dinyatakan sebaliknya, data diberikan untuk bahan-bahan dalam keadaan piawainya (pada 25 °C [77 °F], 100 kPa). | |||
![]() ![]() ![]() | |||
Rujukan kotak info | |||
Air (H2O) ialah sebatian tak organik berkutub, berbentuk cecair yang tidak ada rasa mahupun bau pada suhu bilik, yang hampir tidak berwarna dengan kebiruan sedikit sahaja. Ia merupakan sebatian kimia yang paling banyak dikaji[19] dan digambarkan sebagai "pelarut sejagat"[20] dan "pelarut kehidupan".[21] Ia juga merupakan bahan yang paling banyak ditemui di permukaan Bumi[22] dan satu-satunya bahan biasa yang wujud dalam bentuk pepejal, cecair dan gas di permukaan Bumi.[23] Ia juga merupakan molekul ketiga paling banyak di alam semesta (di belakang molekul hidrogen dan karbon monoksida).[22]
Molekul air membentuk ikatan hidrogen antara satu sama lain dan sangat berkutub. Kekutuban ini membolehkan ia mengasingkan ion dalam garam dan terikat kepada bahan kutub lain seperti alkohol dan asid sehingga melarutkannya. Ikatan hidrogennya menyebabkan banyak sifat uniknya, seperti mempunyai bentuk pepejal yang kurang tumpat daripada bentuk cecairnya, takat didih 100 °C yang agak tinggi untuk jisim molarnya, dan kapasiti haba yang tinggi.
Air bersifat amfoterik, bermakna ia boleh mempamerkan sifat asid atau bes, bergantung pada pH larutan yang berada di dalamnya; ia mudah menghasilkan kedua-dua ion H+ dan OH−.[c] Berkaitan dengan sifat amfoteriknya, ia mengalami pengionan sendiri. Hasil aktiviti atau hampir boleh dikatakan sebagai kepekatan H+ dan OH− merupakan satu pemalar, maka kepekatan masing-masing adalah berkadar songsang antara satu sama lain.[24]
Bentuk-bentuk air
- Sila lihat Kategori:Bentuk-bentuk air
Air boleh menjadi banyak bentuk. Keadaan pepejal bagi air biasanya dikenali sebagai ais (walaupun banyak bentuk yang wujud, sila lihat pepejal air amorfous); keadaan gas dikenali sebagai wap air (or stim), dan fasa cecair biasanya disebut hanya sebagai air. Air adalah asas molekul bagi pelarut berakues.
Berada di atas suhu kritikal tertentu dan tekanan (647 K dan 22.064 MPa), molekul air menjadi keadaan superkritikal, dalam mana cecair berkelompok timbul di dalam fasa wap.
Air berat adalah air di mana atom hidrogen digantikan dengan isotopnya yang lebih berat, deuterium. Secara kimia, ia adalah serupa dengan air biasa. Air berat ini digunakan di dalam industri nuklear untuk memperlahankan neutron-nuetron.
Ciri-ciri molekul
Molekul air mempunyai struktur yang mudah. Namun begitu, struktur ini dapat menghasilkan tindak balas yang kompleks. Air terdiri daripada satu atom oksigen dan dua atom hidrogen.
Setiap atom hidrogen mempunyai satu proton di dalam nukleus dan satu elektron mengorbit nukleus. Nukleus atom oksigen pula terdiri daripada lapan proton. Mengorbit nukleus atom oksigen ialah lapan elektron yang bercas negatif. Dua elektron mengorbit petala yang berhampiran dengan nukleus, manakala enam elektron lagi di petala luar. Petala luar ini masih tidak lengkap dan memerlukan dua elektron lagi untuk menstabilkan aras tenaga. Elektron-elektron tambahan ini disumbangkan oleh hidrogen memandangkan atom hidrogen mempunyai ruang untuk satu lagi elektron.
Disebabkan ini, dua atom hidrogen dan satu atom oksigen boleh bergabung dl1n membentuk H2O, formula kimia yang kita semua kenali. Disebabkan daya penolakan dua atom hidrogen antara satu dengan lain, maka kedua-dua atom hidrogen terpisah pada sudut 104.45 .Konfigurasi ini menghasilkan molekul air yang asimetri.
Ikatan atom yang membentuk molekul air merupakan ikatan kovalen yang berasaskan perkongsian elektron. Walau bagaimanapun, disebabkan bilangan proton di dalam atom oksigen lebih besar daripada atom hidrogen, pasangan elektron yang dikongsi lebih hampir dengan atom oksigen. Ini bermakna perkongsian elektron adalah tidak sama.
Atom oksigen mempunyai tarikan yang lebih terhadap elektron yang dikongsi. Oleh itu, oksigen lebih elektronegatif kerana seolah-olah mempunyai sedikit cas negatif. Disebabkan oleh kehilangan sebahagian daripada komplemennya, atom hidrogen pula bertindak seolah- olah membawa sedikit cas positif. Disebabkan taburan cas yang tidak sama, molekul air dikenali sebagai molekul dwikutub. Molekul air bertindak sama seperti magnet, satu hujungnya bercas positif dan satu hujung lagi pula bercas negatif.
Sifat dwikutub ini penting kerana membenarkan molekul air membentuk ikatan dengan molekul air yang berdekatan. Ikatan ini dikenali sebagai ikatan hidrogen. Atom hidrogen yang mempunyai cas positif yang sedikit boleh ditarik secara lemah oleh satu lagi atom oksigen daripada molekul air lain yang mungkin wujud berdekatan memandangkan oksigen ini bercas sedikit negatif. Dengan kata lain, hujung positif (hidrogen) satu molekul air akan tertarik kepada hujung negatif (oksigen) molekul air yang lain.
Bentuk-bentuk air

Air mengambil banyak bentuk di bumi: Wap air dan awan di langit, aisberg di laut, glasier di pergunungan, akuifer di dalam perut bumi, adalah sebahagian daripada nama air. Menerusi penyejatan, kerpasan, dan pengaliran, air mengalir tanpa henti daripada sau bentuj kepada bentuk yang lain, apa yang dipanggil sebagai kitaran air.
Ciri-ciri fizikal dan kimia air
Tindakan melarut
Berbanding dengan sebarang cecair lain yang terbentuk secara semula jadi, air boleh melarut lebih banyak bahan. Bahan ini pula mampu dilarutkan dalam kuantiti yang besar. Disebabkan oleh keupayaan ini, air dikenali sebagai pelarut semesta. Keupayaan ini membolehkan tindakan kimia berlaku sama ada di persekitaran akuatik itu sendiri atau lebih penting lagi di persekitaran dalaman, iaitu persekitaran dalam sel tempat sel-sel tumbuhan dan haiwan menjalankan fungsi fisiologi dan pembiakan.
Untuk menjelaskan bagaimana sesuatu bahan itu boleh larut dalam air, kita gunakan NaCl sebagai contoh. Garam biasa (NaCl) apabila dilarutkan dalam air akan terpisah kepada ion Na+ dan ion Cl- .Molekul air cenderung berkumpul di sekeliling setiap ion bercas positif, dengan hujung negatif mengarah kepada ion tersebut.
Dengan cara yang sama, molekul air cuba berkumpul mengelilingi setiap ion bercas negatif dengan hujung positif air mengarah kepada ion tersebut. Keadaan ini dikenali sebagai sfera terhidrat dan bertanggungjawab melindungi dan seterusnya menghalang ion-ion daripada bersaling tindak antara satu dengan lain. Keadaan ini juga memaksa ion-ion kekal berselerak di dalam air dan tidak bergabung antara satu dengan lain.
Apabila sfera terhidrat ini terbentuk di sekeliling bahan bercas, bahan itu dianggap telah larut di dalam air. Jadi, air bertindak sebagai pelarut (cecair yang boleh melarutkan satu atau lebih bahan), manakala bahan yang larut dikenali sebagai bahan larut. Kebanyakan molekul yang mempunyai ikatan ion berkemampuan untuk larut di dalam air.
Kebanyakan bahan yang larut di dalam air tidak mengalami perubahan kerana air bersifat agak lengai dan tidak mengubah bahan larutan secara kimia. Sifat ini mempunyai implikasi yang besar terhadap proses fisiologi organisma hidup. Ini bermakna molekul yang diperlukan untuk kehidupan boleh diangkut di dalam darah atau sap dan molekul ini seterusnya boleh disimpan di dalam bentuk larutan, tanpa berubah kepada bahan yang tidak perlu atau toksik.
Ciri terma
Takat suhu beku air adalah pada 0°C dan takat suhu didih air adalah pada 100°C. Jika dibandingkan dengan sebatian yang serupa dengan susunan air (contohnya H2S, H2Se dan H2Te), nilai takat suhu didih dan beku air begitu tinggi. Sebatian lain wujud secara semula jadi hanya sebagai gas, manakala air boleh wujud dalam tiga bentuk (gas, cecair dan pepejal) dalam julat keadaan atmosfera yang sempit.
Untuk menjelaskan keganjilan ini, kita perlu melihat dengan lebih dekat daya antara molekul yang perlu diatasi semasa perubahan daripada satu bentuk kepada bentuk yang lain. Bagi sebarang sebatian, wujud satu tarikan elektrostatik yang lemah antara molekul.
Bahagian nukleus satu molekul akan menarik elektron molekul yang lain. Terdapat juga daya tolakan antara molekul, tetapi daya ini agak lemah dan kurang penting jika dibandingkan dengan daya tarikan. Daya tarikan antara molekul, yang dikenali sebagai daya Van der Waals, menunjukkan kesan yang ketara hanya apabila kedudukan molekul sangat berdekatan antara satu dengan lain seperti keadaan yang wujud dalam pepejal dan cecair.
Secara amnya, lebih berat molekul tersebut, maka semakin besar tarikan Van der Waals antara setiap molekul sebatian tersebut. Maka, dengan bertambahnya berat molekul, lebih banyak tenaga diperlukan untuk mengatasi tarikan ini sebelum pertukaran bentuk boleh berlaku. Takat suhu didih dan takat suhu beku sebatian secara amnya meningkat dengan meningkatnya berat molekul. Sebatian H2S, H2Se dan H2Te mempunyai komposisi molekul yang sama dengan air kerana sebatian-sebatian ini mengandungi dua atom hidrogen dan satu atom unsur yang lain. Berat molekul untuk H2S ialah 34, manakala berat molekul H2Se dan H2Te masing-masing ialah 80 dan 129.
Seperti yang diramalkan oleh daya Van der Waals takat beku dan takat didih meningkat dengan meningkatnya berat molekul.Walau bagaimanapun, satu keganjilan dapat dilihat bagi molekul air. Air yang mempunyai berat molekul 18 diramalkan mempunyai takat beku pada -90°C dan takat didih pada- 68°C. Namun begitu, kita dapati bahawa air membeku pada 0°C dan mendidih pada 100°C.
Penyimpangan takat beku dan takat didih air ini daripada suhu yang dijangka boleh dijelaskan oleh ciri kutub molekul air dan ikatan hidrogen yang terbentuk. Seperti yang telah dibincangkan, selain daripada ikatan Van der Waals terdapat satu lagi ikatan tambahan, iaitu ikatan hidrogen antara molekul air. Untuk memecahkan ikatan ini, tenaga tambahan diperlukan dan ini menyebabkan takat didih dan beku air melebihi daripada takat-takat yang diramalkan.
Haba Tentu
Air mempunyai haba tentu yang tinggi. Berdasarkan sifat ini, hanya ammonia, hidrogen cecair dan litium mempunyai keupayaan yang mengatasi keupayaan molekul air. Haba tentu yang tinggi yang dimiliki oleh molekul air boleh dikaitkan dengan ikatan hidrogen yang terbentuk antara molekul. Haba tentu boleh ditakrifkan sebagai jumlah haba yang diperlukan untuk meningkatkan satu gram air kepada satu darjah Celsius.Bagi molekul air, haba tentu mengambil nilai 1. Haba tentu bagi sebatian lain diukur sebagai nisbah muatan haba sebatian itu dan muatan haba air.
Suhu merupakan ukuran untuk kadar pergerakan molekul. Setiap bahan menunjukkan perbezaan dari segi pengambilan tenaga untuk mencapai tahap pergerakan molekul yang setara. Bagi air bentuk cecair, ikatan hidrogen antara individu molekul mesti dipecahkan terlebih dahulu dan dihalang daripada dibentuk semula.
Selepas proses pemecahan ini barulah molekul boleh bergerak dengan lebih bebas dan seterusnya memperlihatkan peningkatan suhu. Ini dapat menjelaskan mengapa air boleh menyerap haba yang agak banyak tanpa pertambahan suhu yang ketara.
Disebabkan begitu banyak haba perlu diserap sebelum suhu air dapat ditingkatkan sebanyak satu Celcius, proses pemanasan jasad air berlaku dengan perlahan. Proses ini bertanggungjawab menjadikan habitat akuatik lebih stabil dari segi turun naik suhu. Haba tentu air yang tinggi ini juga bermakna bahawa organisma akuatik terdedah kepada julat suhu yang lebih sempit daripada organisma-organisma di ekosistem daratan. Suhu kawasan daratan mungkin mencapai 38 0C atau lebih, tetapi suhu air jarang-jarang melebihi 27°C.
Disebabkan oleh hukum keabadian tenaga, jumlah tenaga di dalam sistem akuatik kekal malar. Jumlah haba yang dibebaskan semasa proses pembekuan adalah sama dengan jumlah yang diserap semasa proses pencairan. Keadaan yang sama juga berlaku semasa proses pengewapan dan pemeluwapan kerana jumlah haba yang diserap dan dibebaskan adalah sama. Kualiti yang ditunjukkan ini akan menjadikan satu jasad air yang besar boleh mengubah iklim kawasan-kawasan daratan yang berhampiran.
Tegangan permukaan
Selain daripada raksa, air mempunyai tegangan permukaan yang paling tinggi di kalangan cecair yang wujud. Kita boleh perhatikan fenomenon tegangan permukaan apabila kita mengisi satu gelas dengan air hingga ke bingkai. Air boleh melebihi bingkai gelas tersebut tanpa melimpah dengan membentuk permukaan cembung. Bentuk sfera titisan air di atas kaca juga menunjukkan tegangan air.
Fenomenon ini menggambarkan kecenderungan molekul untuk menarik satu dengan lain atau melekat pada permukaan. Disebabkan daya lekatan ml, objek yang lebih berat daripada air boleh terapung di permukaan. Banyakserangga berkebolehan untuk menggunakanpermukaan air untuk sokongan, seolah-olah permukaan air adalah padu. Tegangan permukaan boleh wujud disebabkan oleh ikatan hidrogen. Molekul air di permukaan ditarik kuat oleh molekul air di lapisan bawah.
Satu fenomenon menarik yang ditunjukkan oleh air ialah pembasahan. Air mampu berpaut atau melekat di permukaan seperti kaca, bahan organik atau tak organik. Apabila air dicurahkan ke dalam bekas yang dibuat daripada bahan-bahan ini, daya tarikan antara molekul air dengan molekul bahan yang lain (daya lekitan) akan menyebabkan lapisan tegangan permukaan mengambil bentuk cengkung. Sekiranya bekas itu terdiri daripada kaca, bahagian molekul air yang bercas positif akan ditarik oleh atom oksigen kaca tersebut.
Disebabkan tarikan atom-atom oksigen ini yang kuat, molekul air mampu memanjat naik bahagian tepi bekas. Namun begitu, molekul air ini ditahan daripada terus memanjat oleh tarikan ikatan hidrogen antara individu molekul air di lapisan bawah. Sebenarnya, sekiranya diameter bekas dikurangkan menjadi sangat kecil, daya lekitan antara molekul air dengan bekas kaca akan menarik terus air ke satu ketinggian tertentu. Fenomenon ini dikenali sebagai tindakan kapilari.
Kelikatan
Kelikatan bermaksud sebarang rintangan dalaman terhadap pengaliran dan merupakan ciri yang dipunyai oleh semua cecair. Jika dibandingkan dengan kebanyakan cecair, air menunjukkan rintangan yang tinggi terhadap pengaliran. Rintangan ini disebabkan oleh jumlah tenaga yang besar yang terkandung dalam ikatan hidrogen molekul air. Kelikatan yang tinggi ini mempunyai kesan positif dan juga kesan negatif kepada biota dengan mempengaruhi kelakuan, morfologi dan penggunaan tenaga oleh organisma akuatik.
Disebabkan kelikatan air, keupayaan ikan untuk bergerak kehadapan dan pantas dibatasi. Setiap pergerakan kehadapan bermakna ikan terpaksa berhadapan dengan kepayahan yang terbentuk basil daripada pergeseran nekton ini dengan air. Salah satu cara untuk mengatasinya adalah dengan menghasilkan pergerakan lalu arus. Bentuk fusiform ikan menggambarkan penyesuaian untuk mencapai maksud lalu arus yang membolehkan organisma bergerak dengan pantas.
Kualiti ketumpatan
Ketumpatan ditakrifkan sebagai berat per unit isipadu dan selalunya diungkapkan sebagai gram sentimeter padu (g/cm3).Kebanyakan cecair mengecut dan menjadi lebih berat semasa disejukkan kerana jumlah molekul yang sama menduduki ruang yang lebih kecil. Bentuk pepejal bahan ini menjadi lebih berat daripada bentuk cecair. Air bertindak agak berbeza. Semasa suhu air berkurangan, ketumpatan air meningkat. Ini berlaku hanya apabila suhu turun sehingga mencapai 3.98 °C, iaitu suhu apabila ketumpatan adalah pada peringkat maksimum. Semasa suhu air dikurangkan daripada 3.98 °c kepada 0 °C, ketumpatan mulai menurun.
Kualiti ketumpatan air ini boleh diterangkan oleh struktur molekul air dan ikatan hidrogen. Semasa suhu diturunkan daripada 20 °C, molekul air yang tidak terikat menduduki isipadu yang lebih kecil, iaitu ciri yang sama yang ditunjukkan oleh cecair lain. Walau bagaimanapun, semasa suhu menghampiri takat beku di bawah 3.98 °C, pengurangan isipadu diganggu oleh satu lagi fenomena lain. Hablur ais yang mempunyai struktur segi enam yang terbuka wujud dengan banyak. Kadar pertambahan hablur ais yang tinggi semasa suhu menghampiri takat beku menerangkan pengurangan ketumpatan air di bawah 3.98 °C.
Ais yang terbentuk adalah 8% lebih ringan daripada air dalam bentuk cecair. Walaupun perkara ini aneh, tetapi ia mempunyai fungsi bagi organisma akuatik. Tanpa hubungan suhu ketumpatan yang unik ini, ais akan tenggelam apabila terbentuk dan keseluruhan jasad air akan membeku dari permukaan hingga ke dasar. Jika keadaan ini berlaku, habitat akuatik tidak dapat menampung sebarang kehidupan pada musim sejuk. Tetapi disebabkan ais lebih ringan daripada air cecair, maka ais hanya wujud dan terapung di permukaan tasik dan organisma lain dapat meneruskan kehidupan di bawah lapisan ais ini.
Selain daripada suhu, ketumpatan air juga dipengaruhi oleh garam terlarut. Kewujudan garam terlarut meningkatkan ketumpatan air. Ketumpatan air tulen ialah 1.000 dan air laut biasa (35 ppm) ialah 1.02822.
Nota kaki
- ^ A commonly quoted value of 15.7 used mainly in organic chemistry for the pKa of water is incorrect.[12][13]
- ^ a b Vienna Standard Mean Ocean Water (VSMOW), used for calibration, melts at 273.150089(10) K (0.000089(10) °C, and boils at 373.1339 K (99.9839 °C). Other isotopic compositions melt or boil at slightly different temperatures.
- ^ H+ represents H3O+(H2O)n and more complex ions that form.
Rujukan
- ^ "naming molecular compounds". www.iun.edu. Diarkibkan daripada yang asal pada 24 September 2018. Dicapai pada 1 October 2018.
Sometimes these compounds have generic or common names (e.g., H2O is "water") and they also have systematic names (e.g., H2O, dihydrogen monoxide).
- ^ "Definition of Hydrol". Merriam-Webster. Diarkibkan daripada yang asal pada 13 August 2017. Dicapai pada 21 April 2019.
- ^ Leigh, Favre & Metanomski 1998, m/s. 99.
- ^ Braun, Charles L.; Smirnov, Sergei N. (1993-08-01). "Why is water blue?" (PDF). Journal of Chemical Education. 70 (8): 612. Bibcode:1993JChEd..70..612B. doi:10.1021/ed070p612. ISSN 0021-9584. Diarkibkan (PDF) daripada yang asal pada 2019-12-01. Dicapai pada 2018-08-09.
- ^ a b c Tanaka, M; Girard, G; Davis, R; Peuto, A; Bignell, N (August 2001). "Recommended table for the density of water between 0 C and 40 C based on recent experimental reports". Metrologia. 38 (4): 301–309. Bibcode:2001Metro..38..301T. doi:10.1088/0026-1394/38/4/3.
- ^ Lemmon, Eric W.; Bell, Ian H.; Huber, Marcia L.; McLinden, Mark O. (1997). "Thermophysical Properties of Fluid Systems". Dalam Linstrom, P.J.; Mallard, W.G. (penyunting). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology. doi:10.18434/T4D303. Diarkibkan daripada yang asal pada 23 October 2023. Dicapai pada 17 October 2023.
- ^ Lide 2003, Properties of Ice and Supercooled Water in Section 6.
- ^ a b c Anatolievich, Kiper Ruslan. "Properties of substance: water". Diarkibkan daripada yang asal pada 2014-06-02. Dicapai pada 2014-06-01.
- ^ Lide 2003, Vapor Pressure of Water From 0 to 370 °C in Sec. 6.
- ^ Lide 2003, Chapter 8: Dissociation Constants of Inorganic Acids and Bases.
- ^ Weingärtner et al. 2016, m/s. 13.
- ^ "What is the pKa of Water". University of California, Davis. 2015-08-09. Diarkibkan daripada yang asal pada 2016-02-14. Dicapai pada 2016-04-09.
- ^ Silverstein, Todd P.; Heller, Stephen T. (17 April 2017). "pKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?". Journal of Chemical Education. 94 (6): 690–695. Bibcode:2017JChEd..94..690S. doi:10.1021/acs.jchemed.6b00623.
- ^ Ramires, Maria L. V.; Castro, Carlos A. Nieto de; Nagasaka, Yuchi; Nagashima, Akira; Assael, Marc J.; Wakeham, William A. (1995-05-01). "Standard Reference Data for the Thermal Conductivity of Water". Journal of Physical and Chemical Reference Data. 24 (3): 1377–1381. Bibcode:1995JPCRD..24.1377R. doi:10.1063/1.555963. ISSN 0047-2689.
- ^ Lide 2003, 8—Concentrative Properties of Aqueous Solutions: Density, Refractive Index, Freezing Point Depression, and Viscosity.
- ^ Lide 2003, 6.186.
- ^ a b c d Water dalam Linstrom, Peter J.; Mallard, William G. (penyunting); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD)
- ^ Lide 2003, 9—Dipole Moments.
- ^ Greenwood & Earnshaw 1997, m/s. 620.
- ^ "Water, the Universal Solvent". U.S. Department of the Interior. usgs.gov (website) (dalam bahasa Inggeris). United States of America: USGS. October 22, 2019. Diarkibkan daripada yang asal pada December 1, 2021. Dicapai pada December 15, 2020.
- ^ Reece et al. 2013, m/s. 48.
- ^ a b Weingärtner et al. 2016, m/s. 2.
- ^ Reece et al. 2013, m/s. 44.
- ^ "Autoprotolysis constant". IUPAC Compendium of Chemical Terminology (dalam bahasa Inggeris). IUPAC. 2009. doi:10.1351/goldbook.A00532. ISBN 978-0-9678550-9-7. Diarkibkan daripada yang asal pada 2019-04-29. Dicapai pada 2018-08-09.
Bibliografi
- Boyd, Claude E. (2000). "pH, Carbon Dioxide, and Alkalinity". Water Quality. Boston, Massachusetts: Springer. m/s. 105–122. doi:10.1007/978-1-4615-4485-2_7. ISBN 978-1461544852.
- Campbell, Mary K.; Farrell, Shawn O. (2007). Biochemistry (ed. 6th). Cengage Learning. ISBN 978-0-495-39041-1.
- Campbell, Neil A.; Reece, Jane B. (2009). Biology (ed. 8th). Pearson. ISBN 978-0-8053-6844-4.
- Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biology: Exploring Life. Boston: Pearson Prentice Hall. ISBN 978-0-13-250882-7. Diarkibkan daripada yang asal pada 2014-11-02. Dicapai pada 2008-11-19.
- Charlot, G. (2007). Qualitative Inorganic Analysis. Read Books. ISBN 978-1-4067-4789-8.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (ed. 2nd). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005 (PDF). Royal Society of Chemistry. ISBN 978-0-85404-438-2. Diarkibkan (PDF) daripada yang asal pada 2019-12-12. Dicapai pada 2016-07-31.
- Leigh, G. J.; Favre, H. A; Metanomski, W. V. (1998). Principles of chemical nomenclature: a guide to IUPAC recommendations (PDF). Oxford: Blackwell Science. ISBN 978-0-86542-685-6. OCLC 37341352. Diarkibkan daripada yang asal (PDF) pada 2011-07-26.
- Lewis, William C.M.; Rice, James (1922). A System of Physical Chemistry. Longmans, Green and Co.
- Lide, David R. (2003). CRC Handbook of Chemistry and Physics. CRC Handbook (dalam bahasa Inggeris) (ed. 84th). CRC Press. ISBN 978-0849304842. Diarkibkan daripada yang asal pada 2024-02-04. Dicapai pada 2016-05-29.
- Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2013). Campbell Biology (dalam bahasa Inggeris) (ed. 10th). Boston, Mass.: Pearson. ISBN 978-0321775658.
- Riddick, John (1970). Organic Solvents Physical Properties and Methods of Purification. Techniques of Chemistry (dalam bahasa Inggeris). Wiley-Interscience. ISBN 978-0471927266.
- Sharp, Robert Phillip (1988). Living Ice: Understanding Glaciers and Glaciation. Cambridge University Press. m/s. 27. ISBN 978-0-521-33009-1.
- Weingärtner, Hermann; Teermann, Ilka; Borchers, Ulrich; Balsaa, Peter; Lutze, Holger V.; Schmidt, Torsten C.; Franck, Ernst Ulrich; Wiegand, Gabriele; Dahmen, Nicolaus; Schwedt, Georg; Frimmel, Fritz H.; Gordalla, Birgit C. (2016). "Water, 1. Properties, Analysis, and Hydrological Cycle". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a28_001.pub3. ISBN 978-3527306732.
- Zumdahl, Steven S.; Zumdahl, Susan A. (2013). Chemistry (ed. 9th). Cengage Learning. ISBN 978-1-13-361109-7.
Bacaan lanjut
- Ben-Naim, A. (2011), Molecular Theory of Water and Aqueous Solutions, World Scientific